Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Commun Biol ; 5(1): 1140, 2022 Oct 27.
Article in English | MEDLINE | ID: covidwho-2087322

ABSTRACT

Defective interfering (DI) particles arise during virus propagation, are conditional on parental virus for replication and packaging, and interfere with viral expansion. There is much interest in developing DIs as anti-viral agents. Here we characterize DI particles that arose following serial passaging of SARS-CoV-2 at high multiplicity of infection. The prominent DIs identified have lost ~84% of the SARS-CoV-2 genome and are capable of attenuating parental viral titers. Synthetic variants of the DI genomes also interfere with infection and can be used as conditional, gene delivery vehicles. In addition, the DI genomes encode an Nsp1-10 fusion protein capable of attenuating viral replication. These results identify naturally selected defective viral genomes that emerged and stably propagated in the presence of parental virus.


Subject(s)
COVID-19 , Defective Viruses , Humans , Defective Viruses/genetics , SARS-CoV-2/genetics , Defective Interfering Viruses , RNA, Viral/genetics
2.
Molecules ; 27(13)2022 Jun 30.
Article in English | MEDLINE | ID: covidwho-1917636

ABSTRACT

The urgent response to the COVID-19 pandemic required accelerated evaluation of many approved drugs as potential antiviral agents against the causative pathogen, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Using cell-based, biochemical, and modeling approaches, we studied the approved HIV-1 nucleoside/tide reverse transcriptase inhibitors (NRTIs) tenofovir (TFV) and emtricitabine (FTC), as well as prodrugs tenofovir alafenamide (TAF) and tenofovir disoproxilfumarate (TDF) for their antiviral effect against SARS-CoV-2. A comprehensive set of in vitro data indicates that TFV, TAF, TDF, and FTC are inactive against SARS-CoV-2. None of the NRTIs showed antiviral activity in SARS-CoV-2 infected A549-hACE2 cells or in primary normal human lung bronchial epithelial (NHBE) cells at concentrations up to 50 µM TAF, TDF, FTC, or 500 µM TFV. These results are corroborated by the low incorporation efficiency of respective NTP analogs by the SARS-CoV-2 RNA-dependent-RNA polymerase (RdRp), and lack of the RdRp inhibition. Structural modeling further demonstrated poor fitting of these NRTI active metabolites at the SARS-CoV-2 RdRp active site. Our data indicate that the HIV-1 NRTIs are unlikely direct-antivirals against SARS-CoV-2, and clinicians and researchers should exercise caution when exploring ideas of using these and other NRTIs to treat or prevent COVID-19.


Subject(s)
Anti-HIV Agents , COVID-19 Drug Treatment , HIV Infections , HIV-1 , Anti-HIV Agents/pharmacology , Anti-HIV Agents/therapeutic use , Emtricitabine/pharmacology , Emtricitabine/therapeutic use , HIV Infections/drug therapy , Humans , Nucleosides/pharmacology , Nucleosides/therapeutic use , Nucleotides/pharmacology , Pandemics , RNA, Viral , RNA-Dependent RNA Polymerase , SARS-CoV-2 , Tenofovir/pharmacology , Tenofovir/therapeutic use
3.
Sci Transl Med ; 14(656): eabo0718, 2022 08 03.
Article in English | MEDLINE | ID: covidwho-1816673

ABSTRACT

The nucleoside analog remdesivir (RDV) is a Food and Drug Administration-approved antiviral for treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Thus, it is critical to understand factors that promote or prevent RDV resistance. We passaged SARS-CoV-2 in the presence of increasing concentrations of GS-441524, the parent nucleoside of RDV. After 13 passages, we isolated three viral lineages with phenotypic resistance as defined by increases in half-maximal effective concentration from 2.7- to 10.4-fold. Sequence analysis identified nonsynonymous mutations in nonstructural protein 12 RNA-dependent RNA polymerase (nsp12-RdRp): V166A, N198S, S759A, V792I, and C799F/R. Two lineages encoded the S759A substitution at the RdRp Ser759-Asp-Asp active motif. In one lineage, the V792I substitution emerged first and then combined with S759A. Introduction of S759A and V792I substitutions at homologous nsp12 positions in murine hepatitis virus demonstrated transferability across betacoronaviruses; introduction of these substitutions resulted in up to 38-fold RDV resistance and a replication defect. Biochemical analysis of SARS-CoV-2 RdRp encoding S759A demonstrated a roughly 10-fold decreased preference for RDV-triphosphate (RDV-TP) as a substrate, whereas nsp12-V792I diminished the uridine triphosphate concentration needed to overcome template-dependent inhibition associated with RDV. The in vitro-selected substitutions identified in this study were rare or not detected in the greater than 6 million publicly available nsp12-RdRp consensus sequences in the absence of RDV selection. The results define genetic and biochemical pathways to RDV resistance and emphasize the need for additional studies to define the potential for emergence of these or other RDV resistance mutations in clinical settings.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Drug Resistance, Viral , RNA-Dependent RNA Polymerase , SARS-CoV-2 , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Animals , Antiviral Agents/pharmacology , Drug Resistance, Viral/genetics , Humans , Mice , Mutation/genetics , RNA, Viral/genetics , RNA-Dependent RNA Polymerase/genetics , SARS-CoV-2/drug effects , SARS-CoV-2/genetics
4.
J Biol Chem ; 298(2): 101529, 2022 02.
Article in English | MEDLINE | ID: covidwho-1587355

ABSTRACT

Remdesivir (RDV) is a direct-acting antiviral agent that is approved in several countries for the treatment of coronavirus disease 2019 caused by the severe acute respiratory syndrome coronavirus 2. RDV exhibits broad-spectrum antiviral activity against positive-sense RNA viruses, for example, severe acute respiratory syndrome coronavirus and hepatitis C virus, and nonsegmented negative-sense RNA viruses, for example, Nipah virus, whereas segmented negative-sense RNA viruses such as influenza virus or Crimean-Congo hemorrhagic fever virus are not sensitive to the drug. The reasons for this apparent efficacy pattern are unknown. Here, we expressed and purified representative RNA-dependent RNA polymerases and studied three biochemical parameters that have been associated with the inhibitory effects of RDV-triphosphate (TP): (i) selective incorporation of the nucleotide substrate RDV-TP, (ii) the effect of the incorporated RDV-monophosphate (MP) on primer extension, and (iii) the effect of RDV-MP in the template during incorporation of the complementary UTP. We found a strong correlation between antiviral effects and efficient incorporation of RDV-TP. Inhibition in primer extension reactions was heterogeneous and usually inefficient at higher NTP concentrations. In contrast, template-dependent inhibition of UTP incorporation opposite the embedded RDV-MP was seen with all polymerases. Molecular modeling suggests a steric conflict between the 1'-cyano group of the inhibitor and residues of the structurally conserved RNA-dependent RNA polymerase motif F. We conclude that future efforts in the development of nucleotide analogs with a broader spectrum of antiviral activities should focus on improving rates of incorporation while capitalizing on the inhibitory effects of a bulky 1'-modification.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Models, Molecular , RNA Viruses/enzymology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/pharmacology , Alanine/chemistry , Alanine/pharmacology , Antiviral Agents/pharmacology , Hepacivirus/drug effects , Hepacivirus/enzymology , Negative-Sense RNA Viruses/drug effects , Negative-Sense RNA Viruses/enzymology , Nipah Virus/drug effects , Nipah Virus/enzymology , Positive-Strand RNA Viruses/drug effects , Positive-Strand RNA Viruses/enzymology , RNA Viruses/drug effects , RNA, Viral/metabolism , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Virus Replication/drug effects
5.
Enzymes ; 49: 315-354, 2021.
Article in English | MEDLINE | ID: covidwho-1464553

ABSTRACT

The treatment of viral infections remains challenging, in particular in the face of emerging pathogens. Broad-spectrum antiviral drugs could potentially be used as a first line of defense. The RNA-dependent RNA polymerase (RdRp) of RNA viruses serves as a logical target for drug discovery and development efforts. Herein we discuss compounds that target RdRp of poliovirus, hepatitis C virus, influenza viruses, respiratory syncytial virus, and the growing data on coronaviruses. We focus on nucleotide analogs and mechanisms of action and resistance.


Subject(s)
Antiviral Agents/pharmacology , Nucleotides/pharmacology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Viral Replicase Complex Proteins/antagonists & inhibitors , Viruses/enzymology , Virus Replication
7.
J Biol Chem ; 297(1): 100770, 2021 07.
Article in English | MEDLINE | ID: covidwho-1225273

ABSTRACT

The RNA-dependent RNA polymerase of the severe acute respiratory syndrome coronavirus 2 is an important target in current drug development efforts for the treatment of coronavirus disease 2019. Molnupiravir is a broad-spectrum antiviral that is an orally bioavailable prodrug of the nucleoside analogue ß-D-N4-hydroxycytidine (NHC). Molnupiravir or NHC can increase G to A and C to U transition mutations in replicating coronaviruses. These increases in mutation frequencies can be linked to increases in antiviral effects; however, biochemical data of molnupiravir-induced mutagenesis have not been reported. Here we studied the effects of the active compound NHC 5'-triphosphate (NHC-TP) against the purified severe acute respiratory syndrome coronavirus 2 RNA-dependent RNA polymerase complex. The efficiency of incorporation of natural nucleotides over the efficiency of incorporation of NHC-TP into model RNA substrates followed the order GTP (12,841) > ATP (424) > UTP (171) > CTP (30), indicating that NHC-TP competes predominantly with CTP for incorporation. No significant inhibition of RNA synthesis was noted as a result of the incorporated monophosphate in the RNA primer strand. When embedded in the template strand, NHC-monophosphate supported the formation of both NHC:G and NHC:A base pairs with similar efficiencies. The extension of the NHC:G product was modestly inhibited, but higher nucleotide concentrations could overcome this blockage. In contrast, the NHC:A base pair led to the observed G to A (G:NHC:A) or C to U (C:G:NHC:A:U) mutations. Together, these biochemical data support a mechanism of action of molnupiravir that is primarily based on RNA mutagenesis mediated via the template strand.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/virology , Cytidine/analogs & derivatives , Hydroxylamines/pharmacology , RNA, Viral/genetics , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Cytidine/pharmacology , Humans , Mutagenesis , Point Mutation/drug effects , SARS-CoV-2/metabolism
8.
J Biol Chem ; 295(47): 16156-16165, 2020 11 20.
Article in English | MEDLINE | ID: covidwho-793655

ABSTRACT

Remdesivir (RDV) is a direct-acting antiviral agent that is used to treat patients with severe coronavirus disease 2019 (COVID-19). RDV targets the viral RNA-dependent RNA polymerase (RdRp) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We have previously shown that incorporation of the active triphosphate form of RDV (RDV-TP) at position i causes delayed chain termination at position i + 3. Here we demonstrate that the S861G mutation in RdRp eliminates chain termination, which confirms the existence of a steric clash between Ser-861 and the incorporated RDV-TP. With WT RdRp, increasing concentrations of NTP pools cause a gradual decrease in termination and the resulting read-through increases full-length product formation. Hence, RDV residues could be embedded in copies of the first RNA strand that is later used as a template. We show that the efficiency of incorporation of the complementary UTP opposite template RDV is compromised, providing a second opportunity to inhibit replication. A structural model suggests that RDV, when serving as the template for the incoming UTP, is not properly positioned because of a significant clash with Ala-558. The adjacent Val-557 is in direct contact with the template base, and the V557L mutation is implicated in low-level resistance to RDV. We further show that the V557L mutation in RdRp lowers the nucleotide concentration required to bypass this template-dependent inhibition. The collective data provide strong evidence to show that template-dependent inhibition of SARS-CoV-2 RdRp by RDV is biologically relevant.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/pharmacology , Coronavirus RNA-Dependent RNA Polymerase/antagonists & inhibitors , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Transcription Termination, Genetic/drug effects , Adenosine Monophosphate/pharmacology , Alanine/pharmacology , Coronavirus RNA-Dependent RNA Polymerase/chemistry , Coronavirus RNA-Dependent RNA Polymerase/genetics , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Models, Chemical , Mutation , Nucleotides/metabolism , SARS-CoV-2/genetics , Templates, Genetic , Virus Replication/drug effects
9.
J Biol Chem ; 295(20): 6785-6797, 2020 05 15.
Article in English | MEDLINE | ID: covidwho-52576

ABSTRACT

Effective treatments for coronavirus disease 2019 (COVID-19) are urgently needed to control this current pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Replication of SARS-CoV-2 depends on the viral RNA-dependent RNA polymerase (RdRp), which is the likely target of the investigational nucleotide analogue remdesivir (RDV). RDV shows broad-spectrum antiviral activity against RNA viruses, and previous studies with RdRps from Ebola virus and Middle East respiratory syndrome coronavirus (MERS-CoV) have revealed that delayed chain termination is RDV's plausible mechanism of action. Here, we expressed and purified active SARS-CoV-2 RdRp composed of the nonstructural proteins nsp8 and nsp12. Enzyme kinetics indicated that this RdRp efficiently incorporates the active triphosphate form of RDV (RDV-TP) into RNA. Incorporation of RDV-TP at position i caused termination of RNA synthesis at position i+3. We obtained almost identical results with SARS-CoV, MERS-CoV, and SARS-CoV-2 RdRps. A unique property of RDV-TP is its high selectivity over incorporation of its natural nucleotide counterpart ATP. In this regard, the triphosphate forms of 2'-C-methylated compounds, including sofosbuvir, approved for the management of hepatitis C virus infection, and the broad-acting antivirals favipiravir and ribavirin, exhibited significant deficits. Furthermore, we provide evidence for the target specificity of RDV, as RDV-TP was less efficiently incorporated by the distantly related Lassa virus RdRp, and termination of RNA synthesis was not observed. These results collectively provide a unifying, refined mechanism of RDV-mediated RNA synthesis inhibition in coronaviruses and define this nucleotide analogue as a direct-acting antiviral.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/pharmacology , Betacoronavirus/enzymology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Virus Replication/drug effects , Adenosine Monophosphate/pharmacology , Alanine/pharmacology , Animals , Betacoronavirus/physiology , Models, Molecular , SARS-CoV-2 , Sf9 Cells , Spodoptera
10.
J Biol Chem ; 295(15): 4773-4779, 2020 04 10.
Article in English | MEDLINE | ID: covidwho-1988

ABSTRACT

Antiviral drugs for managing infections with human coronaviruses are not yet approved, posing a serious challenge to current global efforts aimed at containing the outbreak of severe acute respiratory syndrome-coronavirus 2 (CoV-2). Remdesivir (RDV) is an investigational compound with a broad spectrum of antiviral activities against RNA viruses, including severe acute respiratory syndrome-CoV and Middle East respiratory syndrome (MERS-CoV). RDV is a nucleotide analog inhibitor of RNA-dependent RNA polymerases (RdRps). Here, we co-expressed the MERS-CoV nonstructural proteins nsp5, nsp7, nsp8, and nsp12 (RdRp) in insect cells as a part a polyprotein to study the mechanism of inhibition of MERS-CoV RdRp by RDV. We initially demonstrated that nsp8 and nsp12 form an active complex. The triphosphate form of the inhibitor (RDV-TP) competes with its natural counterpart ATP. Of note, the selectivity value for RDV-TP obtained here with a steady-state approach suggests that it is more efficiently incorporated than ATP and two other nucleotide analogs. Once incorporated at position i, the inhibitor caused RNA synthesis arrest at position i + 3. Hence, the likely mechanism of action is delayed RNA chain termination. The additional three nucleotides may protect the inhibitor from excision by the viral 3'-5' exonuclease activity. Together, these results help to explain the high potency of RDV against RNA viruses in cell-based assays.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/pharmacology , Middle East Respiratory Syndrome Coronavirus/enzymology , Nucleic Acid Synthesis Inhibitors/pharmacology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Virus Replication/drug effects , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/pharmacology , Alanine/chemistry , Alanine/pharmacology , Animals , Antiviral Agents/chemistry , Coronavirus/enzymology , Ebolavirus/enzymology , Gene Expression , Nucleic Acid Synthesis Inhibitors/chemistry , RNA , RNA-Dependent RNA Polymerase/genetics , Sf9 Cells , Viral Nonstructural Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL